Abstract

The nanomachine from the ATPases associated with various cellular activities superfamily, called spastin, severs microtubules during cellular processes. To characterize the functionally important allostery in spastin, we employed methods from evolutionary information, to graph-based networks, to machine learning applied to atomistic molecular dynamics simulations of spastin in its monomeric and the functional hexameric forms, in the presence or absence of ligands. Feature selection, using machine learning approaches, for transitions between spastin states recognizes all the regions that have been proposed as allosteric or functional in the literature. The analysis of the composition of the Markov State Model macrostates in the spastin monomer, and the analysis of the direction of change in the top machine learning features for the transitions, indicate that the monomer favors the binding of ATP, which primes the regions involved in the formation of the inter-protomer interfaces for binding to other protomer(s). Allosteric path analysis of graph networks, built based on the cross-correlations between residues in simulations, shows that perturbations to a hub specific for the pre-hydrolysis hexamer propagate throughout the structure by passing through two obligatory regions: the ATP binding pocket, and pore loop 3, which connects the substrate binding site to the ATP binding site. Our findings support a model where the changes in the terminal protomers due to the binding of ligands play an active role in the force generation in spastin. The secondary structures in spastin, which are found to be highly degenerative within the network paths, are also critical for feature transitions of the classification models, which can guide the design of allosteric effectors to enhance or block allosteric signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.