Abstract

We prove that the solution of the Hudson-Parthasarathy quantum stochastic differential equation in the Fock space coincides with the solution of a symmetric boundary value problem for the Schrodinger equation in the interaction representation generated by the energy operator of the environment. The boundary conditions describe the jumps in the phase and the amplitude of the Fourier transforms of the Fock vector components as any of its arguments changes the sign. The corresponding Markov evolution equation (the Lindblad equation or the “master equation”) is derived from the boundary value problem for the Schrodinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.