Abstract

Experiments are described that elucidate the quantum mechanical origins of the free induction decay voltage and of spin noise. It is shown that the experimentally measured FID voltage induced in a Hertzian loop receiving coil following a 90 degrees pulse is typically two orders of magnitude too large to be accounted for by the current quantum theory of signal reception-coherent spontaneous emission. An experiment is then presented in which spin noise is easily observed in a circuit with a Q-factor of order unity, thereby undermining a popular hypothesis that such noise is due to spontaneous emission and is only observable because of the enhancement in the density of the radiation field in a high Q-factor tuned circuit, the NMR probe. Both the free induction decay and the spin noise are shown to be accurately predicted by near-field Faraday induction, which is described in the theory of quantum electrodynamics by an exchange of virtual photons. A heuristic approach to understanding the nature and role of virtual photons in the signal reception process is then given. Thus current popular statements that observation of the magnetic resonance phenomenon relies on the absorption and emission of radio waves are shown to be wrong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.