Abstract

Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura’s G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral singularity ℂ3/G. The classical McKay correspondence describes the classical geometry of Y in terms of the representation theory of G. In this paper we describe the quantum geometry of Y in terms of R, an ADE root system associated to G. Namely, we give an explicit formula for the Gromov-Witten partition function of Y as a product over the positive roots of R. In terms of counts of BPS states (Gopakumar-Vafa invariants), our result can be stated as a correspondence: each positive root of R corresponds to one half of a genus zero BPS state. As an application, we use the Crepant Resolution Conjecture to provide a full prediction for the orbifold Gromov-Witten invariants of [ℂ3/G].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.