Abstract

The surface diffusion constant for hydrogen and deuterium on the palladium(111) surface is calculated using quantum mechanical transition state theory. The rate constants for diffusion into the subsurface layer are also calculated. Quantum effects are seen to be most important for the surface/subsurface transition and cause an inverse isotope effect in which the rate for deuterium is greater than the rate for hydrogen. The results of ground and excited state wave function calculations show localized hydrogenic states, despite large zero point energies, and that the preferred binding site can vary with isotope between surface and subsurface sites. In addition, estimates of the tunneling rate between the surface and subsurface are in qualitative agreement with the low temperature transition state results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.