Abstract
Let D(H) be the quantum double associated to a finite dimensional quasi-Hopf algebra H, as in Hausser and Nill ((Hausser, F., Nill, F. (1999a). Diagonal crossed products by duals of quasi-quantum groups. Rev. Math. Phys. 11:553–629) and (Hausser, F., Nill, F. (1999b). Doubles of quasi-quantum groups. Comm. Math. Phys. 199:547–589)). In this note, we first generalize a result of Majid (Majid, S. (1991). Doubles of quasitriangular Hopf algebras. Comm. Algebra 19:3061–3073) for Hopf algebras, and then prove that the quantum double of a finite dimensional quasitriangular quasi-Hopf algebra is a biproduct in the sense of Bulacu and Nauwelaerts (Bulacu, D., Nauwelaerts, E. (2002). Radford's biproduct for quasi-Hopf algebras and bosonization. J. Pure Appl. Algebra 179:1–42.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.