Abstract

The quantum confinement effect on the spectrum of near-field thermal radiation by periodic and random arrays of quantum dots (QDs) is investigated. The local density of states (LDOS) thermally emitted by QD arrays made of three lead chalcogenides, namely, lead sulfide, lead selenide, and lead telluride, is computed at a near-field distance from the arrays. The dielectric function of the QDs is extracted from their absorption spectra by utilizing an optimization technique. The thermal discrete dipole approximation is used for computing the LDOS. It is shown that the peak wavenumber of near-field LDOS emitted by periodic arrays of lead chalcogenide QDs can be significantly modulated (up to 4490 cm−1) by varying the size of the dots. The LDOS is proportional to the imaginary part of the QDs' polarizability, which peaks at the bandgap energy of the QDs. The bandgap energy of the QDs (and thus the LDOS peak) is significantly affected by the quantum confinement effect, which is size dependent. While the magnitude of thermal radiation by random arrays of QDs can be different from the periodic arrays with the same filling factor by up to ±26%, the LDOS spectrum and peak location are the same for both periodic and random arrays. The peak wavenumber of near-field radiative heat transfer between the QD arrays is also strongly affected by quantum confinement in the QDs, and thus, it can be tuned by changing the size of the QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.