Abstract

Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.