Abstract

In this study, we provide a discretized system of a continuous dynamical model for enhancing crop production in the presence of insecticides and insects. Crops are assumed to grow logistically but are limited by an insect population that entirely depends on agriculture. To protect crops from insects, farmers use insecticides, and their overmuch use is harmful to human health. We assumed that external efforts are proportional to the gap between actual production and carrying capacity to increase the field’s development potential. We use the Levenberg–Marquardt algorithm (LMA) based on artificial neural networks (NNs) to investigate the approximate solutions for different insecticide spraying rates. “NDSolve” tool in Mathematica generated a data collection for supervised LMA. The NN-LMA approximation’s value is achieved by the training, validation, and testing reference data sets. Regression, error histograms, and complexity analysis help to validate the technique’s robustness and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.