Abstract

In this paper, the detrended fluctuation analysis DFA is used to investigate and quantify the QT-RR interaction in different pathologic cases in order to distinguish between them. The study is carried out on the ECG signals of MIT-BIH universal database. Different ECG signals related to cardiac pathological cases are concerned with this study. These are: Premature Ventricular Contraction (PVC) (9 cases), Right Bundle Branch Block (RBBB) (4 cases), Left Bundle Branch Block (LBBB) (2 cases), Atrial Premature Beat (APB) (4 cases), Paced Beat (PB) (4 cases), and other pathologic cases with different severity (10 cases). All this cases are compared to the 15 normal cases. The obtained results show that the DFA can identify the healthy subject from the pathologic cases according to the values of the scaling exponent α. The results indicate that α varies between 0.5 and 1 in all cases which means that there is a long range correlation in RR and QT series. The QT and RR series are also modelled using the ARARX model. The parameters of the model are then extracted. The power spectral density (PSD) is estimated by using these parameters in order to provide further information about the causal interactions within the signals and also to determine the power scaling exponent β. This scaling exponent confirms the relationship between RR and QT intervals in all the studied cases except in APB and PB cases where the behaviour is similar to that of the white noise. The QT variability degrees are calculated and the DFA is applied on it. The obtained results show a long range correlation between RR and QT intervals in all cases and an ambiguity in the APB case. The DFA is compared to the Poincaré method in order to evaluate the algorithm performance using the Fuzzy Sugeno classifier is used for this purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.