Abstract

A framework is developed for estimating the volume fraction of fat in steatotic livers from viscoelastic measures of shear wave speed and attenuation. These measures are emerging on clinical ultrasound systems’ elastography options so this approach can become widely available for assessing and monitoring steatosis. The framework assumes a distribution of fat vesicles as spherical inhomogeneities within the liver and uses a composite rheological model (Christensen 1969 J. Mech. Phys. Solids 17 23–41) to determine the shear modulus as a function of increasing volume of fat within the liver. We show that accurate measurements of shear wave speed and attenuation provide the necessary and sufficient information to solve for the unknown fat volume and the underlying liver stiffness. Extension of the framework to compression wave measurements is also possible. Data from viscoelastic phantoms, human liver studies, and steatotic animal livers are shown to provide reasonable estimates of the volume fraction of fat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.