Abstract

Gold nanoparticles film as a part of an optical sensor is considered as active support in the development of specific chemical or biological biosensors optically. Well-organized gold nanoparticles can be prepared through inexpensive approaches where gold nanoparticles are easily obtained on a glass substrate. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified by a short annealing time (1 min and 15 min) at 550 °C and quickly followed by simple quenching. The results proved a good reproducibility of localized surface plasmon resonance (LSPR) optical responses with investigate the effects of modified thermal treatment on the morphology of gold thin films, the extinction LSPR spectra characteristics in the range between 350−1000 nm, and the quality factor (Q-factor) of the plasmonic resonance. The present findings that the proposed method gives evidence enhancement with the enrichment factor (EF-factor) values by about 310 %–460 %. We believe our study may have provided a strategy to enhance the fabrication of gold nanoparticles film based on plasmonic nanostructures for LSPR chip sensor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.