Abstract

A usual loop algebra, not necessarily the matrix form of the loop algebra , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra , the quadratic-form identity presented in this paper is completely consistent with the trace identity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.