Abstract

Edwardsiella piscicida is a widespread pathogen that infects various fish species and causes massive hemorrhagic septicemia, resulting in significant property damage to the global aquaculture industry. Type III and VI secretion systems (T3/T6SS), controlled by the master regulator EsrB, are important virulence factors of E. piscicida that enable bacterial colonization and evasion from host immune clearance. In this study, we demonstrate that the QseE-QseF two-component system negatively regulated esrB expression by reanalysis of Tn-seq data. Moreover, the response regulator QseF directly bound to esrB promoter and inhibited the expression of T3/T6SS genes, especially in the presence of epinephrine. Furthermore, in response to the prompt increasing of epinephrine level, the host immune genes were delayed repressed and QseE-QseF timely inhibited the expression of T3/T6SS genes to evade immune clearance. In summary, this study enhances our understanding and knowledge of the conditional pathogenesis mechanism and virulence regulation network of E. piscicida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call