Abstract

Tightly regulated cellular signaling is critical for correct heart valve development, but how and why signaling is dysregulated in congenital heart disease is not very well known. We focused on protein tyrosine phosphatase Shp2, because mutations in this signaling modulator frequently cause valve malformations associated with Noonan syndrome or Noonan syndrome with multiple lentigines (NSML). To model NSML-associated valve disease, we targeted overexpression of Q510E-Shp2 to mouse endocardial cushions (ECs) using a Tie2-Cre-based approach. At midgestation, Q510E-Shp2 expression increased the size of atrioventricular ECs by 80%. To dissect the underlying cellular mechanisms, we explanted ECs from chick embryonic hearts and induced Q510E-Shp2 expression using adenoviral vectors. Valve cell outgrowth from cultured EC explants into surrounding matrix was significantly increased by Q510E-Shp2 expression. Because focal adhesion kinase (FAK) is a critical regulator of cell migration, we tested whether FAK inhibition counteracts the Q510E-Shp2-induced effects in explanted ECs. The FAK/src inhibitor PP2 normalized valve cell outgrowth from Q510E-Shp2-expressing ECs. Next, chick ECs were further dissociated to assess cell proliferation and migration. Valve cell proliferation was not increased by Q510E-Shp2 as determined by label incorporation. In contrast, valve cell migration as reflected in a wound-healing assay was increased by Q510E-Shp2 expression, indicating that increased migration is the predominant effect of Q510E-Shp2 expression in ECs. In conclusion, PP2-sensitive signaling mediates the pathogenic effects of Q510E-Shp2 on cell migration in EC explant cultures. This suggests a central role for FAK and provides new mechanistic insight into the molecular basis of valve defects in NSML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.