Abstract

This work deals with the isothermal pyrolysis of Pine and Beech wood samples and kinetic studies, using the thermo-analytical technique, at five different operating temperatures. Pyrolysis processes were investigated by using the distributed apparent activation energy model, which involves the complex mixture of different continuous distribution functions. It was found that decomposition processes of wood pseudo-components take place in different conversion areas during entire pyrolyses, whereby these areas, as well as the changes in apparent activation energy (E a) values, are not the same for softwood and hardwood samples. Bulk density (Bden) and energy density (ED) considerations have shown that both biomass samples suffer from low Bden and ED values. It was concluded that pyrolysis can be used as a means of decreasing transportation costs of wood biomass materials, thus increasing energy density. The “pseudo” kinetic compensation effect was identified, which arises from kinetic model variation and wood species variation. In the current extensive study, it was concluded that primary pyrolysis refers to decomposition reactions of any of three major constituents of the considered wood samples. Also, it was established that primary reactions may proceed in parallel with simultaneous decomposition of lignin, hemicelluloses and cellulose in the different regions of wood samples, depending on the operating temperature. It was established that endothermic effects dominate, which are characterized with devolatilization and formation of volatile products. It has been suggested that the endothermic behavior that arises from pyrolyses of considered samples may indicate the endothermic depolymerization sequence of cellulose structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.