Abstract

Shredded automotive tyre waste was pyrolysed in a 200 cm 3 static batch reactor in a N 2 atmosphere. The compositions and properties of the derived gases, pyrolytic oils and solid char were determined in relation to pyrolysis temperatures up to 720 °C and at heating rates between 5 and 80 °C min −1. As the pyrolysis temperature was increased the percentage mass of solid char decreased, while gas and oil products increased until 600 °C after which there was a minimal change to product yield, the scrap tyres producing approximately 55% oil, 10% gas and 35% char. There was a small effect of heating rate on the product yield. The gases were identified as H 2, CO, CO 2, C 4H 6, CH 4 and C 2H 6, with lower concentrations of other hydrocarbon gases. Chemical class composition analysis by liquid chromatography showed that an increase in temperature produced a decrease in the proportion of aliphatic fractions and an increase in aromatic fractions for each heating rate. The molecular mass range of the oils, as determined by size exclusion chromatography, was up to 1600 mass units with a peak in the 300–400 range. There was an increase in molecular mass range as the pyrolysis temperature was increased. FT-i.r. analysis of the oils indicated the presence of alkanes, alkenes, ketones or aldehydes, aromatic, polyaromatic and substituted aromatic groups. Surface area determination of the solid chars showed a significant increase with increasing pyrolysis temperature and heating rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.