Abstract

ABSTRACTIn this article, we focus on the one-sided hypothesis testing for the univariate linear calibration, where a normally distributed response variable and an explanatory variable are involved. The observations of the response variable corresponding to known values of the explanatory variable are used to make inferences on a single unknown value of the explanatory variable. We apply the generalized inference to the calibration problem, and take the generalized p-value as the test statistic to develop a new p-value for one-sided hypothesis testing, which we refer to as the one-sided posterior predictive p-value. The behavior of the one-sided posterior predictive p-value is numerically compared with that of the generalized p-value, and simulations show that the proposed p-value is quite satisfactory in the frequentist performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.