Abstract
Notch pathway plays critical role in stem cell maintenance and angiogenesis, as well as cell fate decisions of cancer. However, concrete mechanisms of notch pathway regulation in glioma were not well known, especially mediated by microRNAs. In this study, we identified a brain-specific miRNA, miR-524-5p, which was associated with the pathological grade and overall survival of gliomas. Restorated expression of miR-524-5p in glioma suppressed cell proliferation and invasion both in vitro and in vivo. Using bioinformatics and biological approaches, we found that Jagged-1 and Hes-1, two key components of notch pathway, were direct targets of miR-524-5p. Knocking down of Jagged-1 or Hes-1 partially phenocopied miR-524-5p re-expression, whereas forced expression of Jagged-1 or Hes-1 reversed the effects of miR-524-5p on proliferation and invasion of glioma. Moreover, miR-524-5p levels in glioma samples were inversely correlated with Jagged-1 and Hes-1 and their overexpressions were associated with poor survival. Thus, we have identified that miR-524-5p behaves as a tumor suppressor by negatively targeting Jagged-1 and Hes-1 and provides an additional option to inhibit this oncogene in gliomas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.