Abstract

Abstract The hypothetical impact structure in the Saginaw Bay (Michigan, USA, Lake Huron) has been tested by the gravity data derived from the recent gravity field model EIGEN 6C4 (expanded to degree and order 2190, with ground resolution of ~9 km). The following gravity field aspects were used: the gravity disturbances/anomalies, second derivatives of the disturbing potential (Marussi tensor), two of three gravity invariants, their specific ratio (known as 2D factor), the strike angles, and the virtual deformations. These gravity aspects are sensitive in various ways to the underground density contrasts. For the Saginaw Bay area, we confirm that we do not see any typical impact crater in terms of gravity disturbance or the radial second order derivative, possibly because of the thick layer of the ice located at the place and time of the impact. But the “combed” strike angles (one type of the gravity aspects we use) disclose a trace of high pressure to the SE/S/SW of the Bay and may be due to an impacting body. Thus, we provide circumstantial evidence of the Younger Dryas impact hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.