Abstract
The active generation of behavioral variability is thought to be a pivotal element in reinforcement based learning. One example for this principle is song learning in oscine birds. Oscines possess a highly specialized set of brain areas that compose the song system. It is yet unclear how the song system evolved. One important hypothesis assumes a motor origin of the song system, i.e. the song system may have developed from motor pathways that were present in an early ancestor of extant birds. Indeed, in pigeons neural pathways are present that parallel the song system. We examined whether one component of these pathways, a forebrain area termed nidopallium intermedium medialis pars laterale (NIML), is functionally comparable to its putative homologue, the lateral magnocellular nucleus of the anterior nidopallium (LMAN) of the song system. LMAN conveys variability into the motor output during singing; a function crucial for song learning and maintenance. We tested if NIML is likewise associated with the generation of variability. We used a behavioral paradigm in which pigeons had to find hidden target areas on a touch screen to gain food rewards. Alterations in pecking variability would result in changes of performance levels in this search paradigm. We found that pharmacological inactivation of NIML did not reduce pecking variability contrasting increases of song stereotypy observed after LMAN inactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.