Abstract

The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocysts arranged in a periodic pattern when deprived of a fixed source of nitrogen. In a genetic screen for mutations that prevent diazotrophic growth, open reading frame all1758, which encodes a putative serine/threonine phosphatase, was identified. Mutation of all1758 resulted in a number of seemingly disparate phenotypes that included a delay in the morphological differentiation of heterocysts, reduced cell size, and lethality under certain conditions. The mutant was incapable of fixing nitrogen under either oxic or anoxic conditions, and lacked the minor heterocyst-specific glycolipid. Pattern formation, as indicated by the timing and pattern of expression from the promoters of hetR and patS fused transcriptionally to the gene for green fluorescent protein (GFP), was unaffected by mutation of all1758, suggesting that its role in the formation of heterocysts is limited to morphological differentiation. Transcription of all1758 was constitutive with respect to both cell type and conditions of growth, but required a functional copy of all1758. The reduced cell size of the all1758 mutant and the location of all1758 between the cell division genes ftsX and ftsY may be indicative of a role for all1758 in cell division. Taken together, these results suggest that the protein encoded by all1758 may represent a link between cell growth, division and regulation of the morphological differentiation of heterocysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.