Abstract
The comet lander PHILAE (part of the ESA mission ROSETTA) is going to touch down on comet 67P/Churyumov–Gerasimenko in 2014. Landing dynamics depend on the mechanical strength of the surface material: in an extremely soft material, the lander (100 kg, 1 m/s touch-down velocity) may sink in too deep for successful operation while on a very hard surface the probability for bouncing and overturning increases. It is shown that direct knowledge on the strength of cometary surface material is very limited. In our view, even the Deep Impact experiment could not provide a reliable value of the mechanical strength of comet Tempel 1. We discuss the definition of “strength” and revise the ideas on cometary surface strength and theories that describe the low-velocity (≈1 m/s) impact of blunt bodies into dust-rich, fluffy cometary materials. Available direct and indirect measurements and data are critically reviewed. Lessons learnt from laboratory measurements to verify our equations of motion are presented as well. Conclusions for Philae are drawn: most likely, the soft landing will lead to a typical penetration of the lander's feet of up to 20 cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.