Abstract

The 52-nucleotide 5'-untranslated region of the human erythroid 5-aminolevulinate synthase mRNA contains a 28-nucleotide iron-responsive element-like stem-loop motif. We fused the 5'-untranslated region upstream to the coding sequence of the human growth hormone cDNA. A chimeric construct containing a mutated variant of the presumptive iron-responsive element was similarly synthesized. Translation of the wild type chimeric transcript was markedly repressed (approximately 95%) in rabbit reticulocyte lysates as opposed to the mutant. Both transcripts translated with comparable efficiency in wheat germ extracts. Purified placental iron regulatory factor selectively and markedly inhibited translation of the wild type chimeric transcript (> 90%) when tested in wheat germ extracts. By contrast, translations of either the mutant chimeric transcript or other control mRNA species were unaffected. The proximal position of the iron-responsive element relative to the cap site was shown to be important for translational control, in vitro. Our studies suggest that interaction of the iron regulatory factor with the iron-responsive element sterically hinders formation of the preinitiation complex, resulting in translational repression. Thus inactivation of the repressor protein by critical levels of iron or heme would trigger translation of this mRNA in erythroid cells. Consequently, protoporphyrin and heme synthesis would be subtly coordinated with iron supply.

Highlights

  • From the $Departmentof Biochemistry, University of Adelaide, Adelaide, South Australia 5001 and the VSwiss Institutefor Experimental Cancer Research, Genetics Unit, CH-1066 Epalinges, Switzerland

  • The 52-nucleotide5’-untranslatedregion of the hu- Two distincthuman genes for these isozymeshavebeen manerythroid 5-aminolevulinate synthamseRNA con- isolated in our laboratory, and these are located on separate tains a 28-nucleotide iron-responsive element-like chromosomes, namely chromosome 3 for ALAS-h and the X

  • The 52-nucleotide, 5”untranslated region (5’-UTR) of the human erythroid ALAS mRNA is almost entirely composed of a secondary structure, consisting of a 46-nucleotide stem and unpaired loop

Read more

Summary

MATERIALS ANDMETHODS

Design of a Synthetic IRE-The 5'-UTR of the erythroid ALAS gene, encompassing the IRE, was chemically synthesized (Organic Synthesis Unit, Departmentof Biochemistry, University of Adelaide, Adelaide) as two antiparallel and complementary oligonucleotides, each 70 nucleotides in length.

Gc PC Gc
IRE alone
Findings
IRF proximal
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call