Abstract

The Leotiomycete Botrytis cinerea is a high-impact plant pathogen causing gray mold disease in a wide range of dicotyledonous species. Besides its efficient strategies to cause disease – either by being highly aggressive leading to rapid destruction of plant tissues or by keeping hidden for certain periods before damaging the host – the fungus is well-adapted to the changing environmental conditions due to different modes of reproduction for dispersal (macroconidia), survival (sclerotia) or adaptation (ascospores formed in the apothecia). The screening of a collection of B. cinerea mutants generated by Agrobacterium tumefaciens-mediated transformation (ATMT) has revealed a number of virulence-attenuated mutants. In the avirulent mutant PA2810 the inserted T-DNA disrupts the gene encoding a putative histone 3 lysine 36 (H3K36)-specific demethylase (BcKDM1). Targeted mutagenesis of bckdm1 confirmed the gene-phenotype linkage and indicated that BcKDM1, despite its role in virulence (critical for penetration), is required for coping with excessive light, oxidative stress and for proper expression of light-responsive genes and photomorphogenesis. Thus, bckdm1 loss-of-function mutants produce sclerotia under unfavorable conditions such as in the light. Notably, mutants expressing a truncated BcKDM1 (bckdm1991aa) showed deviating phenotypes from deletion (Δbckdm1) and demethylase-deficient (bckdm1H360A) mutants but also from the wild type, thereby indicating the importance of the C-terminal region for some developmental processes. This effect may be specific to B. cinerea as the orthologs from other Ascomycetes cannot replace BcKDM1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call