Abstract

The chitin modifying deacetylases (CDA) CDA1 and CDA2 have been reported to play partially redundant roles during insect cuticle formation and molting and tracheal morphogenesis in various insect species. In order to distinguish possible functional differences between these two enzymes, we analyzed their function during wing development in the fruit fly Drosophila melanogaster. In tissue-specific RNA interference experiments, we demonstrate that DmCDA1 (Serpentine, Serp) and DmCDA2 (Vermiform, Verm) have distinct functions during Drosophila adult wing cuticle differentiation. Chitosan staining revealed that Serp is the major enzyme responsible for chitin deacetylation during wing cuticle formation, while Verm does not seem to be needed for this process. Indeed, it is questionable whether Verm is a chitin deacetylase at all. Atomic force microscopy suggested that Serp and Verm have distinct roles in establishing the shape of nanoscale bumps at the wing surface. Moreover, our data indicate that Verm but not Serp is required for the laminar arrangement of chitin. Both enzymes participate in the establishment of the cuticular inward barrier against penetration of xenobiotics. Taken together, correct differentiation of the wing cuticle involves both Serp and Verm in parallel in largely non-overlapping functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.