Abstract
In this Note, the equations of nonlinear three-dimensional elasticity corresponding to the pure displacement problem are recast either as a boundary value problem, or as a minimization problem, where the unknown is in both cases the Cauchy–Green strain tensor, instead of the deformation as is customary. We then show that either problem possesses a solution if the applied forces are sufficiently small and the stored energy function satisfies specific hypotheses. The second problem provides an example of a minimization problem for a non-coercive functional over a Banach manifold. To cite this article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.