Abstract

A finite element model (FEM) of the ST drive from Seagate is developed in ANSYS to investigate the shock response of the hard disk drive (HDD). The FEM includes the pivot bearing, the head stack assembly (HSA) and the disk. The free state of the HSA is determined by an iterative procedure to produce the prescribed preloading force at the head–disk interface. The FE model is then verified by conducting a modal analysis over the HSA. The obtained mode shapes and resonant frequencies are compared with the modal testing results. An acceleration pulse is applied to the shaft and the whole disk surface at the same time to study the shock response of the HDD. The head slap behavior is examined at the slider–disk interface. The effect of the pulse width on the head slap behavior is studied. The duration of the acceleration pulse varies from 0.3 to 1 ms. It is found that the lift-up height of the slider reaches a peak value at different pulse widths when the amplitude of acceleration pulse changes. This is due to the nonlinear behavior introduced by the contact surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.