Abstract

Granular materials include fuels, foods, feedstocks, and raw materials, and they are frequently created in drilling, exploration, and comminution. However, despite this ubiquity, they can be much more difficult to transport than other materials. Screw conveyors can be used, as can bailing, gas-blowing, and vibro-conveyors, but all have issues related to some combination of complexity, inclination, differential friction, and torque reaction. We propose an entirely new concept: a combination of the vibro-conveyor and the Tesla valve. This ‘pulse-elevator’ is a single piece of inert material, it can operate vertically, it does not depend upon frictional interactions, and it is effectively torqueless. This paper describes the mechanism in analytical, numerical, and experimental terms, and then illustrates two successful experimental use cases: powder uplift from a hopper, and the replacement of augering in a rock-drilling application. These cases are particularly relevant for the facilitation of ISRU and subsurface exploration in space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.