Abstract

In this paper, the p t h moment exponential synchronization problems of drive-response stochastic memristor neural networks are studied via a state feedback controller. The dynamics of the memristor neural network are nonidentical, consisting of both asymmetrically nondelayed and delayed coupled, state-dependent, and subject to exogenous stochastic perturbations. The pth moment exponential synchronization of these drive-response stochastic memristor neural networks is guaranteed under some testable and computable sufficient conditions utilizing differential inclusion theory and Filippov regularization. Finally, the correctness and effectiveness of our theoretical results are demonstrated through a numerical example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call