Abstract

The catalytic activity of Pt/Ni/TiO2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO2 nanotubes. In addition, the Pt/Ni TiO2 nanotubes modified electrode exhibited an excellent performance in cyclic voltammetry results by changing the concentration of glucose. The proposed electrode had a wide linear range up to 13 mM with the detection sensitivity of 230 μAmM−1 cm−2 respectively. The experiment results also revealed that the electrode exhibited good selectivity with no interference from other oxidable species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.