Abstract

Protein complexes are responsible for key biological processes, but methods to produce recombinant protein complexes for biochemical and biophysical studies are limited. We have developed a second generation Escherichia coli polycistronic expression system which improves on the modularity of our original pST39 polycistronic system. This pST44 expression system simplifies the construction of polycis-tronic plasmids, particularly of variant plasmids expressing deletion or point mutations in any subunit. To facilitate purification of the expressed complex, we have prepared a suite of 72 plasmids which allows individual subunits to be tagged at the N- or C-terminus with six permanent or cleavable peptide affinity tags. We demonstrate these new features in a detailed deletion analysis of a three protein yeast Piccolo NuA4 histone acetyltransferase complex, and in the affinity purification of a human Piccolo NuA4 complex. We also utilize the modular design to show that the order of expression of the three subunits along the polycistronic plasmid does not affect the reconstitution of the yeast Piccolo complex in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.