Abstract

The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n represents any natural number. The value for a given Z(n) is the smallest integer such that 1+2+3+... + Z(n) is divisible by n. Within the Pseudo-Smarandache Function, there are several formulas which make it easier to find the Z(n) values.Formulas have been developed for most numbers including: a) p, where p equals a prime number greater than two; b) b, where p equals a prime number, x equals a natural number, and b=-px; c) x, where x equals a natural number, if x/2 equals an odd number greater than two; d) x, where x equals a natural number, if x/3 equals a prime number greater than three. Therefore, formulas exist in the Pseudo-Smarandache Function for all values of b except for the following: a) x, where x = a natural number, if x/3 = a nonprime number whose factorization is not 3x; b) multiples of four that are not powers of two. All of these formulas are proven, and their use greatly reduces the effort needed to find Z(n) values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.