Abstract

We study fundamental decision problems on linear dynamical systems in discrete time. We focus on pseudo-orbits, the collection of trajectories of the dynamical system for which there is an arbitrarily small perturbation at each step. Pseudo-orbits are generalizations of orbits in the topological theory of dynamical systems. We study the pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state, and the pseudo-Skolem problem, whether a hyperplane is reachable by an e-pseudo-orbit for every e. These problems are analogous to the well-studied orbit problem and Skolem problem on unperturbed dynamical systems. Our main results show that the pseudo-orbit problem is decidable in polynomial time and the Skolem problem on pseudo-orbits is decidable. The former extends the seminal result of Kannan and Lipton from orbits to pseudo-orbits. The latter is in contrast to the Skolem problem for linear dynamical systems, which remains open for proper orbits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.