Abstract

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment‐based design. We describe the de novo combination of different 5‐membered NP‐derived N‐heteroatom fragments to structurally unprecedented “pseudo‐natural products” in an efficient complexity‐generating and enantioselective one‐pot synthesis sequence. The pseudo‐NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP‐derived chemotypes, and may have novel biological targets. Investigation of the pseudo‐NPs in unbiased phenotypic assays and target identification led to the discovery of the first small‐molecule ligand of the RHO GDP‐dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP‐bound RHO GTPases and alters the subcellular localization of RHO GTPases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.