Abstract

BackgroundPseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. The latter positively controls the transcription of rhlAB, as well as of rhlC, which is required for di-rhamnolipid synthesis. The rhlG gene encodes an NADPH-dependent β-ketoacyl reductase. Although it was reported to be required for the biosynthesis of the fatty acid part of rhamnolipids, its function in rhamnolipid synthesis was later questioned. The rhlG transcription and its role in rhamnolipid production were investigated here.ResultsUsing 5′-RACE PCR, a luxCDABE-based transcriptional fusion, and quantitative reverse transcription-PCR, we confirmed two previously identified σ70- and σ54-dependent promoters and we identified a third promoter recognized by the extra-cytoplasmic function sigma factor AlgU. rhlG was inversely regulated compared to rhlAB and rhlC: the rhlG transcription was down-regulated in response to N-butyryl-l-homoserine lactone, the communication molecule of the RhlRI system, and was induced by hyperosmotic stress in an AlgU-dependent manner. Consistently with this transcriptional pattern, the single or double deletions of rhlG and PA3388, which forms an operon with rhlG, did not dramatically impair rhamnolipid synthesis.ConclusionThis first detailed study of rhlG transcription reveals a complex regulation involving three sigma factors and N-butyryl-l-homoserine lactone. We furthermore present evidences that RhlG does not play a key role in rhamnolipid synthesis.

Highlights

  • Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence

  • Zhu and Rock [3] reported that RhlG was not required for rhamnolipid synthesis in the heterologous host Escherichia coli and that rhlG mutants of P. aeruginosa PA14 and PAO1 were not affected in rhamnolipid production

  • Since the rhlG mRNA concentration was only slightly lower in a lasR mutant than in the wildtype strain, it was concluded that LasR is not a direct activator of rhlG transcription, but it remained possible that RhlR plays this role [4]. rhlG was proposed to be regulated as the rhlAB operon [4], consistently with the notion that the encoded enzymes belong to the same biosynthesis pathway

Read more

Summary

Introduction

Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. Zhu and Rock [3] reported that RhlG was not required for rhamnolipid synthesis in the heterologous host Escherichia coli and that rhlG mutants of P. aeruginosa PA14 and PAO1 were not affected in rhamnolipid production These authors concluded that RhlG plays no role in rhamnolipid formation and that its physiological substrate remains to be identified [3]. Rhamnolipid production was impaired in rpoN mutants [7,8], but subsequent data showed that the RhlR/C4-HSL complex activates the rhlA promoter independently from σ54 [12] and it remains unclear if the latter acts only indirectly on rhlAB transcription. It turned out later that the transcription of the PA1131-rhlC and the rmlBDAC operons is mainly dependent on RhlR/ C4-HSL, and the PA1131-rhlC promoter was proposed to be σ54-dependent [15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.