Abstract
Pseudomonas aeruginosa ATCC 17933 uses a pyrroloquinoline quinone-dependent ethanol oxidation system. Two mutants of P. aeruginosa, unable to grow on ethanol and showing no acetyl-CoA synthetase (ACS) activity under standard test conditions, were complemented by cosmid pTB3018. Subcloning led to the isolation of a gene which encodes a protein with high similarity to acetyl-CoA synthetases. Interruption of the putative acsA gene by a kanamycin-resistance cassette resulted in a mutant also unable to grow on ethanol and with very low residual acetyl-CoA-forming activity. Complementation by the wild-type allele of the acsA gene restored growth and led to the expression of ACS activity in excess of that of wild-type cells. In wild-type P. aeruginosa, ACS activity was induced upon growth on ethanol, 2,3-butanediol, malonate and acetate. The wild-type and mutants defective in ACS activity showed an active acetate kinase (ACK) under the growth conditions used; however, phosphotransacetylase (PTA) could not be detected. The data indicate that P. aeruginosa requires active acsA gene product for growth on ethanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.