Abstract
BackgroundPseudoenzymes, catalytically deficient variants of active enzymes, have a wide range of regulatory functions. ADP-ribosylhydrolase-like 1 (ADPRHL1), a pseudoenzyme belonging to a small group of ADP-ribosylhydrolase enzymes that lacks the amino acid residues necessary for catalytic activity, may have a significant role in heart development based on accumulating evidence. However, the specific function of ADPRHL1 in this process has not been elucidated. To investigate the role of ADPRHL1 in the heart, we generated the first in vitro human embryonic stem cell model with an ADPRHL1 knockout.MethodUsing the CRISPR/Cas9 system, we generated ADPRHL1 knockout in the human embryonic stem cell (hESC) H9 line. The cells were differentiated into cardiomyocytes using a chemically defined and xeno-free method. We employed confocal laser microscopy to detect calcium transients and microelectrode array (MEA) to assess the electrophysiological activity of ADPRHL1 deficiency cardiomyocytes. Additionally, we investigated the cellular mechanism of ADPRHL1 by Bulk RNA sequencing and western blot.ResultsThe results indicate that the absence of ADPRHL1 in cardiomyocytes led to adhered abnormally, as well as perturbations in calcium transients and electrophysiological activity. We also revealed that disruption of focal adhesion formation in these cardiomyocytes was due to an excessive upregulation of the ROCK–myosin II pathway. Notably, inhibition of ROCK and myosin II effectively restores focal adhesions in ADPRHL1-deficient cardiomyocytes and improved electrical conduction and calcium activity.ConclusionsOur findings demonstrate that ADPRHL1 plays a critical role in maintaining the proper function of cardiomyocytes by regulating the ROCK–myosin II pathway, suggesting that it may serve as a potential drug target for the treatment of ADPRHL1-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.