Abstract

Hypoxic lung cancer cells are highly resistant to radiation. Peroxiredoxin-1 (PRX-1), a transcriptional coactivator that enhances the DNA-binding activity of serum reactive factor, has been identified as a target for radiotherapy sensitization, but the underlying molecular mechanism remains unclear. This study aimed to investigate the influence of PRX-1 on radiotherapy sensitivity in hypoxic tumors. Hypoxic lung cancer cells exhibited radiotherapy-resistant phenotypes after irradiation, including increased proliferation, DNA damage repair, cell migration, invasion and stemness. Radio-resistant hypoxic lung cancer cells showed high expression levels of PRX-1. Furthermore, we observed that PRX-1 bound to the promoter region of TRL4 (−300 to −600) and promoted its transcription and expression and that PRX-1/TRL4 activated the NF-κB/p65 signaling pathway. Increased radiotherapy resistance of hypoxic lung cancer cells increased their ability to proliferate, migrate, and maintain stemness in vivo and in vitro. These findings suggest that PRX-1/TRL4 could be used as a target for the treatment of radiotherapy-resistant lung cancer cells and further provide a theoretical basis for the clinical treatment of hypoxic lung cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call