Abstract
The formation of the ventral furrow during Drosophila gastrulation is driven by coordinated apical constriction. Cell-cell adhesion is thought to regulate apical constriction, but the mechanisms are poorly understood. DE-cadherin, an epithelial classic cadherin, has in its membrane-proximal extracellular region a suite of domains absent from vertebrate/urochordate classic cadherins. We constructed DEΔP, a DE-cadherin derivative that lacks the membrane-proximal half of the extracellular region but retains the entire cytoplasmic domain and still exhibits strong cell-cell binding ability. The extracellular region of DEΔP consists of only cadherin repeats, mimicking vertebrate/urochordate classic cadherins. In animals lacking DE-cadherin, DEΔP organized adherens junction assembly and functioned fully in many cadherin-dependent processes, including oogenesis. Embryos in which DE-cadherin was entirely replaced by DEΔP established the blastoderm epithelium but failed to form a ventral furrow. Apical constrictions were initiated relatively normally but subsequently decelerated. These were then followed by catastrophic disruption of the junctional network. Our results suggest that although the membrane-proximal half of the DE-cadherin extracellular region is dispensable for many developmental events, it is essential for efficient and robust apical constriction during ventral furrow formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.