Abstract

We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics, a fact that allows us to derive new proximal splitting algorithms for nonconvex structured optimization problems, as particular instances of the general schemes. Under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka–Łojasiewicz property, we prove that the iterates converge to a Karush–Kuhn–Tucker point of the objective function. By assuming that the augmented Lagrangian has the Łojasiewicz property, we also derive convergence rates for both the augmented Lagrangian and the iterates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.