Abstract
The Schwarzschild–Couder Telescope (SCT) is a dual mirror medium-sized telescope proposed for the Cherenkov Telescope Array (CTA), the next-generation very-high energy (from about 20 GeV to 300 TeV) gamma-ray observatory. The SCT design consists of a dual-mirror optics and a high resolution camera with a field of view (FoV) of 8 degrees squared, which will allow exceptional performance in terms of angular resolution and background rejection. A prototype telescope (named pSCT) has been installed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is partially equipped and covers a FoV of 2.7°. The pSCT has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. The upgrade of the pSCT focal plane is now ongoing, aimed to equip the full camera with upgraded sensors and electronics, enhancing the telescope field of view from the current 2.7°to the final 8°. In this presentation, an overview of the pSCT project and obtained results will be given, together with the camera upgrade status and expected performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.