Abstract
1. The magnitude of the protonmotive force in respiring bovine heart submitochondrial particles was estimated. The membrane-potential component was determined from the uptake of S14CN-ions, and the pH-gradient component from the uptake of [14C]methylamine. In each case a flow-dialysis technique was used to monitor uptake. 2. With NADH as substrate the membrane potential was approx. 145mV and the pH gradient was between 0 and 0.5 unit when the particles were suspended in a Pi/Tris reaction medium. The addition of the permeant NO3-ion decreased the membrane potential with a corresponding increase in the pH gradient. In a medium containing 200mM-sucrose, 50mM-KCl and Hepes as buffer, the total protonmotive force was 185mV, comprising a membrane potential of 90mV and a pH gradient of 1.6 units. Thus the protonmotive force was slightly larger in the high-osmolarity medium. 3. The phosphorylation potential (= deltaG0' + RT ln[ATP]/[ADP][Pi]) was approx. 43.1 kJ/mol (10.3kcal/mol) in all the reaction media tested. Comparison of this value with the protonmotive force indicates that more than 2 and up to 3 protons must be moved across the membrane for each molecule of ATP synthesized by a chemiosmotic mechanism. 4. Succinate generated both a protonmotive force and a phosphorylation potential that were of similar magnitude to those observed with NADH as substrate. 5. Although oxidation of NADH supports a rate of ATP synthesis that is approximately twice that observed with succinate, respiration with either of these substrates generated a very similar protonmotive force. Thus there seemed to be no strict relation between the size of the protonmotive force and the phosphorylation rate. 6. In the presence of antimycin and/or 2-n-heptyl-4-hydroxyquinoline N-oxide, ascorbate oxidation with either NNN'N'-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine as electron mediator generated a membrane potential of approx. 90mV, but no pH gradient was detected, even in the presence of NO3-. These data are discussed with reference to the proposal that cytochrome oxidase contains a proton pump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.