Abstract
In cytochrome c oxidase (CcO), exergonic electron transfer reactions from cytochrome c to oxygen drive proton pumping across the membrane. Elucidation of the proton pumping mechanism requires identification of the molecular components involved in the proton transfer reactions and investigation of the coupling between internal electron and proton transfer reactions in CcO. While the proton-input trajectory in CcO is relatively well characterized, the components of the output pathway have not been identified in detail. In this study, we have investigated the pH dependence of electron transfer reactions that are linked to proton translocation in a structural variant of CcO in which Arg481, which interacts with the heme D-ring propionates in a proposed proton output pathway, was replaced with Lys (RK481 CcO). The results show that in RK481 CcO the midpoint potentials of hemes a and a(3) were lowered by approximately 40 and approximately 15 mV, respectively, which stabilizes the reduced state of Cu(A) during reaction of the reduced CcO with O(2). In addition, while the pH dependence of the F --> O rate in wild-type CcO is determined by the protonation state of two protonatable groups with pK(a) values of 6.3 and 9.4, only the high-pK(a) group influences this rate in RK481 CcO. The results indicate that the protonation state of the Arg481 heme a(3) D-ring propionate cluster having a pK(a) of approximately 6.3 modulates the rate of internal electron transfer and may act as an acceptor of pumped protons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.