Abstract

The proton charge radius has been measured since the 1950s using elastic electron–proton scattering and ordinary hydrogen atomic spectroscopy. In 2010, a highly precise measurement of the proton charge radius using, for the first time, muonic hydrogen spectroscopy unexpectedly led to controversy, as the value disagreed with the previously accepted one. Since then, atomic and nuclear physicists have been trying to understand this discrepancy by checking theories, questioning experimental methods and performing new experiments. Recently, two measurements from electron scattering and ordinary hydrogen spectroscopy were found to agree with the results from muonic atom spectroscopy. Is the ‘proton-radius puzzle’ now resolved? In this Review, we scrutinize the experimental studies of the proton radius to gain insight on this issue. We provide a brief history of the proton before describing the techniques used to measure its radius and the current status of the field. We assess the precision and reliability of available experimental data, with particular focus on the most recent results. Finally, we discuss the forthcoming new generation of refined experiments and theoretical calculations that aim to definitely end the debate on the proton size. The charge radius of the proton is controversial because measurements by different methods disagree. Recent results indicate that these measurements might be reconciled. In this Review, we discuss the experimental techniques used to measure the proton radius and describe the current status of the field as well as forthcoming experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call