Abstract

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call