Abstract

Torpedo californica is a species in class Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular junction (NMJ). Here, we took a combined cDNA sequencing and proteomic approach to define the molecular constituents of the T. californica electric organ. For soluble proteins, 2-DE was used and 224 protein spots were mapped. Plasma membrane fractions were analyzed using the shotgun approach (LC-MS/MS). A Torpedo cDNA library was constructed and 607 cDNA clones were sequenced. Identification of electric organ proteins was done using cross-species comparisons, and a custom database was constructed from cDNA translations. We unambiguously identified 121 proteins and transcripts, 103 of which were novel additions to the existing databases of Torpedo fish. Fifteen proteins of known function, but not previously associated with either the electroplaque or NMJ, were present at high abundance. These included the heat shock and oxidative stress proteins, annexin V (calelectrin), and plectin 1. Most interesting were the unambiguous matches to 11 human ORFs of unknown function, including four potential RNA splicing proteins, a vacuolar sorting protein, and a tetraspanin containing protein. This analysis identified proteins that may play a role in the higher vertebrate neuromuscular junction or other electrical synapses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.