Abstract

Regenerative periodontal therapy is often unpredictable and limited. Cementum regeneration is necessary for the proper repair of a periodontal ligament. The precise mechanism how bone morphogenetic protein-7 (BMP7) induces differentiation and mineralization of cementoblasts remains undetermined. The purpose of this study was to evaluate the effect of BMP7 on early proteome and gene expression profile of cementoblastic OCCM.30 cells in vitro. Immortalized murine cementoblasts (OCCM.30) were exposed to BMP7 and evaluated for: (1) proliferation; (2) mineralization; (3) early proteome profile using liquid chromatography-mass spectrometry (LC-MS); and (4) gene expression by quantitative RT-PCR. Bone morphogenetic protein-7 increased the cell proliferation at 24h and 48h, while higher doses suppressed the cell proliferation at 48h. BMP7 induced the mineralization of cementoblasts following 8days of therapy. Using LC-MS we identified 1117 proteins from the cell lysate. Many belonged to extracellular matrix formation such as PCPE1, collagens, annexins and integrin receptors. RT-PCR analyses revealed a BMP7 dose-dependent upregulation of BMP1, TGFβ1, osterix, osteoprotegerin, procollagen I and II, PCPE1, and noggin, while BMP6 and chordin expression were decreased. The high BMP7 dose down regulated most of the genes 24h following therapy. Bone morphogenetic protein-7 promotes differentiation and mineralization of cementoblasts via inducing PCPE1 and BMP1 responsible for processing of type I collagen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.