Abstract

The main challenge of biological network alignment is that the problem of finding the alignments in two graphs is NP-hard. The discovery of protein-protein interaction (PPI) networks is of great importance in bioinformatics due to their utilization in identifying the cellular pathways, finding new medicines, and disease recognition. In this regard, we describe the network alignment method in the form of a classification problem for the very first time and introduce a deep network that finds the alignment of nodes present in the two networks. We call this method RENA, which means Network Alignment using REcurrent neural network. The proposed solution consists of three steps; in the first phase, we obtain the sequence and topological similarities from the networks' structure. For the second phase, the dataset needed for the transformation of the problem into a classification problem is created from obtained features. In the third phase, we predict the nodes' alignment between two networks using deep learning. We used Biogrid dataset for RENA evaluation. The RENA method is compared with three classification approaches of support vector machine, K-nearest neighbors, and linear discriminant analysis. The experimental results demonstrate the efficiency of the RENA method and 100% accuracy in PPI network alignment prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.