Abstract

Sprouting negatively affects the quality of stored potato tubers. Understanding the molecular mechanisms that control this process is important for the development of potato varieties with desired sprouting characteristics. Serine/threonine protein phosphatase type 2A (PP2A) has been implicated in several developmental programs and stress responses in plants. PP2A comprises a catalytic (PP2Ac), a scaffolding (A), and a regulatory (B) subunit. In cultivated potato, six PP2Ac isoforms were identified, named StPP2Ac1, 2a, 2b, 3, 4, and 5. In this study we evaluated the sprouting behavior of potato tubers overexpressing the catalytic subunit 2b (StPP2Ac2b-OE). The onset of sprouting and initial sprout elongation is significantly delayed in StPP2Ac2b-OE tubers; however, sprout growth is accelerated during the late stages of development, due to a high degree of branching. StPP2Ac2b-OE tubers also exhibit a pronounced loss of apical dominance. These developmental characteristics are accompanied by changes in carbohydrate metabolism and response to gibberellic acid, and a differential balance between abscisic acid, gibberellic acid, cytokinins, and auxin. Overexpression of StPP2Ac2b alters the source-sink balance, increasing the source capacity of the tuber, and the sink strength of the sprout to support its accelerated growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.